# Eigen values

TO solve a function that takes two input A and B in which A represent coefficient and B represents the respective right hand values and returns the solution array

Python code:

`from scipy import linalg`

import numpy as np

a = ([[3,2,0],[1,-1,0],[0,5,1]])

b = ([2,4,-1])

x = linalg.solve(a,b)

print(x)

`Output:`

```
[ 2. -2. 9.]
```

`from scipy import linalg`

import numpy as np

A = np.array([[1,2],[3,4]])

x = linalg.det(A)

print("determinant of A:",x)

`Output:`

```
determinant of A: -2.0
```

`from scipy import linalg`

import numpy as np

A = np.array([[1,2],[3,4]])

l,v=linalg.eig(A)

print("eigen values:")

print(l)

print("eigen vectors:")

print(v)`Output:`

eigen values:

[-0.37228132+0.j 5.37228132+0.j]

eigen vectors:

[[-0.82456484 -0.41597356]

[ 0.56576746 -0.90937671]]

`from scipy import linalg`

import numpy as np

a = np.random.randn(3,2)+1.j*np.random.randn(3,2)

U,S,Vh = linalg.svd(a)

print(U,Vh,S)

```
[[ 0.077977 +0.05411598j -0.77019965-0.39853945j -0.4406608 -0.21158427j]
[-0.31303172+0.49822701j -0.35071814+0.26303478j 0.5632886 -0.3798637j ]
[ 0.68816976-0.41375647j -0.23602533-0.0077673j 0.53815934-0.09921794j]] [[ 0.8028028 +0.j -0.30462668-0.51255268j]
[ 0.59624463+0.j 0.41015908+0.69011728j]] [3.05464529 2.79889948]
```